

Example of Using “Hooks”
We are going to discuss in this example about adding a new tab in the “View Organization”

page under Staff CP > Users > Manage Organization > open any organization. This tab will list all

tickets that belong to an Organization.

Steps to follow :

1. Creating a custom app – You will need to create a custom app and hook it with the

existing code. Place the custom app folder under the “__Apps” folder of your helpdesk

installation.

2. Create a new folder in your custom app folder called “config”. The first required file is

the “config.xml” file. This file contains the custom application information which is

displayed under Admin CP > Apps > click on the respective app.

3. The second file required to be placed in the “Config” folder is the setup database file

which has to be named matching the custom app name. For example, if the custom app

folder is named “Organizationtickets”, this means our setup database file must be called

“class.SWIFT_SetupDatabase_organizationtickets.php”. This file is very structured and

contains some “key” functions within it, these functions control how Kayako installs,

uninstalls and processes the application during upgrades. The function names we must

create are “install”, “uninstall”, “construct”, “destruct” and finally “upgrade”.

4. Once we have created both the required files, we will see our application is listed under

Admin CP > Apps section. The default state of the custom app will be “Not Installed”.

5. Next we need to create our “hook” into the Kayako system. To do this we need to create

a special folder within our custom app folder called “hooks”. Within the hooks folder,

we need to add a custom “hook” file, this file must be named to match the name of the

Kayako defined hook we wish to use. As mentioned before, we are adding a tab to the

user organization display page and therefore the file we need to create will be called

“staff_userorganization_tabs.hook”. The code within this file is not part of using hooks,

this code is actually the code we are adding to achieve our new functionality. The code

in this file basically adds a new tab to the organization view and sets the tab contents to

point to a new function we have not created yet.

6. As we are making a call to a function within our custom app which currently does not

exist, so now we need to create the next folder within our custom app folder to enable

us to create the required function. The reason we are creating a “staff” folder is because

the change we are making is in the staff control panel, so when we call a function from

our hook, it will automatically look for the controller within the “staff” folder of our

custom application.

7. The file we need to create in “staff” folder will be called

“class.Controller_organizationtickets.php”. In this file, we will have the function needed

to display our new tab’s contents. The common elements within this file however will

have to be the same as all other controllers. The file will need a construct and destruct

function, along with our custom function.

 Diagram illustrating above example and structure of files required to use “Hooks”.

- (organizationtickets)

 – (config.xml and

class.SWIFT_SetupDatabase_organizationtickets.php)

– (staff_userorganization_tabs.hook)

– (class.Controller_organizationtickets.php)

